skip to main content


Search for: All records

Creators/Authors contains: "Garmendia, Antonio"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. When dealing with safety-critical systems, various regulations, standards, and guidelines stipulate stringent requirements for certification and traceability of artifacts, but typically lack \rev{details} with regards to the corresponding software engineering process. Given the industrial practice of only using semi-formal notations for describing engineering processes with the lack of proper tool mapping engineers and developers need to invest a significant amount of time and effort to ensure that all steps mandated by quality assurance are followed. The sheer size and complexity of systems and regulations make manual, timely feedback from Quality Assurance (QA) engineers infeasible. In order to address these issues, in this paper, we propose a novel framework for tracking, and ``passively'' executing processes in the background, automatically checking QA constraints depending on process progress, and informing the developer of unfulfilled QA constraints. We evaluate our approach by applying it to three case studies: a safety-critical open-source community system, a safety-critical system in the air-traffic control domain, and a non-safety-critical, web-based system. Results from our analysis confirm that trace links are often corrected or completed after the work step has been considered finished, and the engineer has already moved on to another step. Thus, support for timely and automated constraint checking has significant potential to reduce rework as the engineer receives continuous feedback already during their work step. 
    more » « less
    Free, publicly-accessible full text available September 1, 2024
  2. null (Ed.)
    Runtime monitoring is essential for ensuring the safe operation and enabling self-adaptive behavior of Cyber-Physical Systems (CPS). It requires the creation of system monitors, instrumentation for data collection, and the definition of constraints. All of these aspects need to evolve to accommodate changes in the system. However, most existing approaches lack support for the automated generation and setup of monitors and constraints for diverse technologies and do not provide adequate support for evolving the monitoring infrastructure. Without this support, constraints and monitors can become stale and become less effective in long-running, rapidly changing CPS. In this ``new and emerging results'' paper we propose a novel framework for model-integrated runtime monitoring. We combine model-driven techniques and runtime monitoring to automatically generate large parts of the monitoring framework and to reduce the maintenance effort necessary when parts of the monitored system change. We build a prototype and evaluate our approach against a system for controlling the flights of unmanned aerial vehicles. 
    more » « less